BPA Project Number: 2010-072-00 Contract Number: 71307 Work Elements: AB and AD Project Notification Form Number: 2016096

August 19, 2016

HIP III CONSERVATION MEASURES

General Aquatic Conservation Measures Applicable to all Actions.	2
Project Design and Site Preparation.	
Work Area Isolation & Fish Salvage.	
Construction and Post-Construction Conservation Measures	
Staged Rewatering Plan.	12
HIP III Turbidity Monitoring Protocol.	
Stormwater Management Guidance	
General Conservation Measures for Terrestrial Plants, Wildlife and Aquatic Invertebrates	
River, Stream, and Floodplain Restoration	18
2c: Protect Streambanks Using Bioengineering Methods	18
2e: Riparian Vegetation Planting	20
Sponsor Signature	20

General Aquatic Conservation Measures Applicable to all Actions.

The activities covered under the HIP III are intended to protect and restore fish and wildlife habitat with long-term benefits to ESA-listed species. However, project construction may have short-term adverse effects on ESA-listed species and associated critical habitat. To minimize these short-term adverse effects and make them predictable for the purposes of programmatic analysis, the BPA will include in all projects implemented under this HIP III proposed action the following general conservation measures (developed in coordination with USFWS and NMFS).

Project Design and Site Preparation.

- 1) **Climate change.** Best available science regarding the future effects within the project area of climate change, such as changes in stream flows and water temperatures, will be considered during project design.
- 2) **State and Federal Permits.** All applicable regulatory permits and official project authorizations will be obtained before project implementation. These permits and authorizations include, but are not limited to, National Environmental Policy Act, National Historic Preservation Act, and the appropriate state agency removal and fill permit, USACE Clean Water Act (CWA) 404 permits, and CWA section 401 water quality certifications.
- 3) **Timing of in-water work.** Appropriate Idaho Department of Fish and Game (IDFG) guidelines for timing of in-water work windows will be followed.
 - a) Bull trout While utilizing the appropriate State designated in-water work period will lessen the risk to bull trout, this alone may not be sufficient to adequately protect local bull trout populations. This is especially true if work is occurring in spawning and rearing areas because eggs, alevin, and fry are in the substrate or closely associated habitats nearly year round. Some areas may not have designated in-water work windows for bull trout or if they do, they may conflict with work windows for salmon and steelhead. If this is the case, or if proposed work is to occur within bull trout spawning and rearing habitats, project proponents will contact the appropriate USFWS Field Office to insure that all reasonable implementation measures are considered and an appropriate in-water work window is being used to minimize project effects.
 - b) Lamprey the project sponsor and/or their contractors will avoid working in stream or river channels that contain Pacific Lamprey from March 1 to July 1 in low to mid elevation reaches (<5,000 feet). In high elevation reaches (>5,000 feet), the project sponsor will avoid working in stream or river channels from March 1 to August 1. If either timeframe is incompatible with other objectives, the area will be surveyed for nests and lamprey presence, and avoided if possible. If lampreys are known to exist, the project sponsor will utilize dewatering and salvage procedures outlined in US Fish and Wildlife Service (2010)¹.

Lemhi River Restoration 2

_

¹ U.S. Fish and Wildlife Service. 2010. Best management practices to minimize adverse effects to Pacific lamprey. Available online at:

- c) Exceptions to IDFG in-water work windows will be requested through the Variance process (Page 2).
- 4) **Contaminants.** The project sponsor will complete a site assessment with the following elements to identify the type, quantity, and extent of any potential contamination for any action that involves excavation of more than 20 cubic yards of material:
 - a) A review of available records, such as former site use, building plans, and records of any prior contamination events;
 - b) A site visit to inspect the areas used for various industrial processes and the condition of the property;
 - c) Interviews with knowledgeable people, such as site owners, operators, and occupants, neighbors, or local government officials; and
 - d) A summary, stored with the project file that includes an assessment of the likelihood that contaminants are present at the site, based on items 4(a) through 4(c).
- 5) **Site layout and flagging.** Prior to construction, the action area will be clearly flagged to identify the following:
 - a) Sensitive resource areas, such as areas below ordinary high water, spawning areas, springs, and wetlands;
 - b) Equipment entry and exit points;
 - c) Road and stream crossing alignments;
 - d) Staging, storage, and stockpile areas; and
 - e) No-spray areas and buffers.

6) Temporary access roads and paths.

- a) Existing access roads and paths will be preferentially used whenever reasonable, and the number and length of temporary access roads and paths through riparian areas and floodplains will be minimized to lessen soil disturbance and compaction, and impacts to vegetation.
- b) Temporary access roads and paths will not be built on slopes where grade, soil, or other features suggest a likelihood of excessive erosion or failure. If slopes are steeper than 30%, then the road will be designed by a civil engineer with experience in steep road design.
- c) The removal of riparian vegetation during construction of temporary access roads will be minimized. When temporary vegetation removal is required, vegetation will be cut at ground level (not grubbed).
- d) At project completion, all temporary access roads and paths will be obliterated, and the soil will be stabilized and revegetated. Road and path obliteration refers to the most comprehensive degree of decommissioning and involves decompacting the surface and ditch, pulling the fill material onto the running surface, and reshaping to match the original contour.
- e) Temporary roads and paths in wet areas or areas prone to flooding will be obliterated by the end of the in-water work window.

http://www.fws.gov/pacific/Fisheries/sphabcon/lamprey/pdf/Best%20Management%20Practices%20for%20Pacific%20Lamprey%20April%202010%20Version.pdf

7) Temporary stream crossings.

- a) Existing stream crossings will be preferentially used whenever reasonable, and the number of temporary stream crossings will be minimized.
- b) Temporary bridges and culverts will be installed to allow for equipment and vehicle crossing over perennial streams during construction. Treated wood shall not be used on temporary bridge crossings or in locations in contact with or over water.
- c) Equipment and vehicles will cross the stream in the wet only where:
 - i. The streambed is bedrock; or
 - ii. Mats or off-site logs are placed in the stream and used as a crossing.
- d) Vehicles and machinery will cross streams at right angles to the main channel wherever possible.
- e) The location of the temporary crossing will avoid areas that may increase the risk of channel re-routing or avulsion.
- f) Potential spawning habitat (i.e., pool tailouts) and pools will be avoided to the maximum extent possible.
- g) No stream crossings will occur at active spawning sites, when holding adult listed fish are present, or when eggs or alevins are in the gravel. The appropriate state fish and wildlife agency will be contacted for specific timing information.
- h) After project completion, temporary stream crossings will be obliterated and the stream channel and banks restored.

8) Staging, storage, and stockpile areas.

- a) Staging areas (used for construction equipment storage, vehicle storage, fueling, servicing, and hazardous material storage) will be 150 feet or more from any natural water body or wetland, or on an adjacent, established road area in a location and manner that will preclude erosion into or contamination of the stream or floodplain.
- b) Natural materials used for implementation of aquatic restoration, such as large wood, gravel, and boulders, may be staged within the 100-year floodplain.
- c) Any large wood, topsoil, and native channel material displaced by construction will be stockpiled for use during site restoration at a specifically identified and flagged area.
- d) Any material not used in restoration, and not native to the floodplain, will be removed to a location outside of the 100-year floodplain for disposal.
- 9) **Equipment.** Mechanized equipment and vehicles will be selected, operated, and maintained in a manner that minimizes adverse effects on the environment (e.g., minimally-sized, low pressure tires; minimal hard-turn paths for tracked vehicles; temporary mats or plates within wet areas or on sensitive soils). All vehicles and other mechanized equipment will be:
 - a) Stored, fueled, and maintained in a vehicle staging area placed 150 feet or more from any natural water body or wetland or on an adjacent, established road area;
 - b) Refueled in a vehicle staging area placed 150 feet or more from a natural waterbody or wetland, or in an isolated hard zone, such as a paved parking lot or adjacent, established road (this measure applies only to gas-powered equipment with tanks larger than 5 gallons);
 - c) Biodegradable lubricants and fluids shall be used on equipment operating in and adjacent to the stream channel and live water.

- d) Inspected daily for fluid leaks before leaving the vehicle staging area for operation within 150 feet of any natural water body or wetland; and
- e) Thoroughly cleaned before operation below ordinary high water, and as often as necessary during operation, to remain grease free.
- 10) **Erosion control.** Erosion control measures will be prepared and carried out, commensurate in scope with the action, that may include the following:
 - a) Temporary erosion controls.
 - i. Temporary erosion controls will be in place before any significant alteration of the action site and appropriately installed downslope of project activity within the riparian buffer area until site rehabilitation is complete.
 - ii. If there is a potential for eroded sediment to enter the stream, sediment barriers will be installed and maintained for the duration of project implementation.
 - iii. Temporary erosion control measures may include fiber wattles, silt fences, jute matting, wood fiber mulch and soil binder, or geotextiles and geosynthetic fabric.
 - iv. Soil stabilization utilizing wood fiber mulch and tackifier (hydro-applied) may be used to reduce erosion of bare soil if the materials are noxious weed free and nontoxic to aquatic and terrestrial animals, soil microorganisms, and vegetation.
 - v. Sediment will be removed from erosion controls once it has reached 1/3 of the exposed height of the control.
 - vi. Once the site is stabilized after construction, temporary erosion control measures will be removed.
 - b) Emergency erosion controls. The following materials for emergency erosion control will be available at the work site:
 - i. A supply of sediment control materials; and
 - ii. An oil-absorbing floating boom whenever surface water is present.
- 11) **Dust abatement.** The project sponsor will determine the appropriate dust control measures by considering soil type, equipment usage, prevailing wind direction, and the effects caused by other erosion and sediment control measures. In addition, the following criteria will be followed:
 - a) Work will be sequenced and scheduled to reduce exposed bare soil subject to wind erosion.
 - b) Dust-abatement additives and stabilization chemicals (typically magnesium chloride, calcium chloride salts, or ligninsulfonate) will not be applied within 25 feet of water or a stream channel and will be applied so as to minimize the likelihood that they will enter streams. Applications of ligninsulfonate will be limited to a maximum rate of 0.5 gallons per square yard of road surface, assuming a 50:50 (ligninsulfonate to water) solution.
 - c) Application of dust abatement chemicals will be avoided during or just before wet weather, and at stream crossings or other areas that could result in unfiltered delivery of the dust abatement materials to a waterbody (typically these would be areas within 25 feet of a waterbody or stream channel; distances may be greater where vegetation is sparse or slopes are steep).
 - d) Spill containment equipment will be available during application of dust abatement chemicals.
 - e) Petroleum-based products will not be used for dust abatement.

- 6) Spill prevention, control, and counter measures. The use of mechanized machinery increases the risk for accidental spills of fuel, lubricants, hydraulic fluid, or other contaminants into the riparian zone or directly into the water. Additionally, uncured concrete and form materials adjacent to the active stream channel may result in accidental discharge into the water. These contaminants can degrade habitat, and injure or kill aquatic food organisms and ESA-listed species. The project sponsor will adhere to the following measures:
 - a) A description of hazardous materials that will be used, including inventory, storage, and handling procedures will be available on-site.
 - b) Written procedures for notifying environmental response agencies will be posted at the work site.
 - c) Spill containment kits (including instructions for cleanup and disposal) adequate for the types and quantity of hazardous materials used at the site will be available at the work site.
 - d) Workers will be trained in spill containment procedures and will be informed of the location of spill containment kits.
 - e) Any waste liquids generated at the staging areas will be temporarily stored under an impervious cover, such as a tarpaulin, until they can be properly transported to and disposed of at a facility that is approved for receipt of hazardous materials.
- 7) **Invasive species control.** The following measures will be followed to avoid introduction of invasive plants and noxious weeds into project areas:
 - a) Prior to entering the site, all vehicles and equipment will be power washed, allowed to fully dry, and inspected to make sure no plants, soil, or other organic material adheres to the surface.
 - b) Watercraft, waders, boots, and any other gear to be used in or near water will be inspected for aquatic invasive species.
 - c) Wading boots with felt soles are not to be used due to their propensity for aiding in the transfer of invasive species.

Work Area Isolation & Fish Salvage.

Any work area within the wetted channel will be isolated from the active stream whenever ESA-listed fish are reasonably certain to be present, or if the work area is less than 300-feet upstream from known spawning habitats. When work area isolation is required, design plans will include all isolation elements, fish release areas, and, when a pump is used to dewater the isolation area and fish are present, a fish screen that meets NMFS's fish screen criteria (NMFS 2011², or most current). Work area isolation and fish capture activities will occur during periods of the coolest air and water temperatures possible, normally early in the morning versus late in the day, and during conditions appropriate to minimize stress and death of species present.

For salvage operations in known bull trout spawning and rearing habitat, electrofishing shall only occur from May 1 to July 31. No electrofishing will occur in any bull trout occupied habitat after August 15. Bull trout are very temperature sensitive and generally should not be electroshocked or otherwise handled when temperatures exceed 15 degrees celsius. Salvage activities should take place during periods of the coolest air and water temperatures possible, normally early in the morning versus late in the day, and during conditions appropriate to minimize stress to fish species present.

Salvage operations will follow the ordering, methodologies, and conservation measures specified below in Steps 1 through 6. Steps 1 and 2 will be implemented for all projects where work area isolation is necessary according to conditions above. Electrofishing (Step 3) can be implemented to ensure all fish have been removed following Steps 1 and 2, or when other means of fish capture may not be feasible or effective. Dewatering and rewatering (Steps 4 and 5) will be implemented unless wetted in-stream work is deemed to be minimally harmful to fish, and is beneficial to other aquatic species. Dewatering will not be conducted in areas known to be occupied by lamprey, unless lampreys are salvaged using guidance set forth in US Fish and Wildlife Service (2010)³.

1) Isolate.

- a) Block nets will be installed at upstream and downstream locations and maintained in a secured position to exclude fish from entering the project area.
- b) Block nets will be secured to the stream channel bed and banks until fish capture and transport activities are complete. Block nets may be left in place for the duration of the project to exclude fish.
- c) If block nets remain in place more than one day, the nets will be monitored at least daily to ensure they are secured to the banks and free of organic accumulation. If the project is within bull trout spawning and rearing habitat, the block nets must be checked every four

² National Marine Fisheries Service. 2011. Anadromous salmonid passage facility design. Northwest Region. Available online at: http://www.nwr.noaa.gov/Salmon-Hydropower/FERC/upload/Fish-Passage-Design.pdf

³ U.S. Fish and Wildlife Service. 2010. Best management practices to minimize adverse effects to Pacific lamprey. Available online at:

http://www.fws.gov/pacific/Fisheries/sphabcon/lamprey/pdf/Best%20Management%20Practices%20for%20Pacific%20Lamprey%20April%202010%20Version.pdf

- hours for fish impingement on the net. Less frequent intervals must be approved through a variance request.
- d) Nets will be monitored hourly anytime there is instream disturbance.
- 2) **Salvage.** As described below, fish trapped within the isolated work area will be captured to minimize the risk of injury, then released at a safe site:
 - a) Remove as many fish as possible prior to dewatering.
 - b) During dewatering, any remaining fish will be collected by hand or dip nets.
 - c) Seines with a mesh size to ensure capture of the residing ESA-listed fish will be used.
 - d) Minnow traps will be left in place overnight and used in conjunction with seining.
 - e) If buckets are used to transport fish:
 - i. The time fish are in a transport bucket will be limited, and will be released as quickly as possible;
 - ii. The number of fish within a bucket will be limited based on size, and fish will be of relatively comparable size to minimize predation;
 - iii. Aerators for buckets will be used or the bucket water will be frequently changed with cold clear water at 15 minute or more frequent intervals.
 - iv. Buckets will be kept in shaded areas or will be covered by a canopy in exposed areas.
 - v. Dead fish will not be stored in transport buckets, but will be left on the stream bank to avoid mortality counting errors.
 - f) As rapidly as possible (especially for temperature-sensitive bull trout), fish will be released in an area that provides adequate cover and flow refuge. Upstream release is generally preferred, but fish released downstream will be sufficiently outside of the influence of construction.
 - g) Salvage will be supervised by a qualified fisheries biologist experienced with work area isolation and competent to ensure the safe handling of all fish.
- 3) **Electrofishing.** Electrofishing will be used only after other salvage methods have been employed or when other means of fish capture are determined to not be feasible or effective. If electrofishing will be used to capture fish for salvage, the salvage operation will be led by an experienced fisheries biologist and the following guidelines will be followed:
 - a) The NMFS's electrofishing guidelines (NMFS 2000).
 - b) Only direct current (DC) or pulsed direct current (PDC) will be used and conductivity must be tested.
 - i. If conductivity is less than 100 µs, voltage ranges from 900 to 1100 will be used.
 - ii. For conductivity ranges between 100 to 300 μs, voltage ranges will be 500 to 800.
 - iii. For conductivity greater than 300 µs, voltage will be less than 400.
 - c) Electrofishing will begin with a minimum pulse width and recommended voltage and then gradually increase to the point where fish are immobilized.
 - d) The anode will not intentionally contact fish.
 - e) Electrofishing shall not be conducted when the water conditions are turbid and visibility is poor. This condition may be experienced when the sampler cannot see the stream bottom in one foot of water.
 - f) If mortality or obvious injury (defined as dark bands on the body, spinal deformations, de-scaling of 25% or more of body, and torpidity or inability to maintain upright attitude after sufficient recovery time) occurs during electrofishing, operations will be

immediately discontinued, machine settings, water temperature and conductivity checked, and procedures adjusted or electrofishing postponed to reduce mortality.

- 4) **Dewater.** Dewatering, when necessary, will be conducted over a sufficient period of time to allow species to naturally migrate out of the work area and will be limited to the shortest linear extent practicable.
 - a) Diversion around the construction site may be accomplished with a coffer dam and a bypass culvert or pipe, or a lined, non-erodible diversion ditch. Where gravity feed is not possible, a pump may be used, but must be operated in such a way as to avoid repetitive dewatering and rewatering of the site. Impoundment behind the cofferdam must occur slowly through the transition, while constant flow is delivered to the downstream reaches.
 - b) All pumps will have fish screens to avoid juvenile fish impingement or entrainment, and will be operated in accordance with NMFS's current fish screen criteria (NMFS 2011⁴, or most recent version). If the pumping rate exceeds 3 cubic feet second (cfs), a NMFS Hydro fish passage review will be necessary.
 - c) Dissipation of flow energy at the bypass outflow will be provided to prevent damage to riparian vegetation or stream channel.
 - d) Safe reentry of fish into the stream channel will be provided, preferably into pool habitat with cover, if the diversion allows for downstream fish passage.
 - e) Seepage water will be pumped to a temporary storage and treatment site or into upland areas to allow water to percolate through soil or to filter through vegetation prior to reentering the stream channel.
- 5) **Salvage Notice.** Monitoring and recording of fish presence, handling, and mortality must occur during the duration of the isolation, salvage, electrofishing, dewatering, and rewatering operations. Once operations are completed, a salvage report will document procedures used, any fish injuries or deaths (including numbers of fish affected), and causes of any deaths.

⁴ National Marine Fisheries Service. 2011. Anadromous salmonid passage facility design. Northwest Region. Available online at: http://www.nwr.noaa.gov/Salmon-Hydropower/FERC/upload/Fish-Passage-Design.pdf

Construction and Post-Construction Conservation Measures.

1) **Fish passage.** Fish passage will be provided for any adult or juvenile fish likely to be present in the action area during construction, unless passage did not exist before construction or the stream is naturally impassable at the time of construction. If the provision of temporary fish passage during construction will increase negative effects on aquatic species of interest or their habitat, a variance can be requested from the NMFS Branch Chief and the FWS Field Office Supervisor. Pertinent information, such as the species affected, length of stream reach affected, proposed time for the passage barrier, and alternatives considered, will be included in the variance request.

2) Construction and discharge water.

- a) Surface water may be diverted to meet construction needs, but only if developed sources are unavailable or inadequate.
- b) Diversions will not exceed 10% of the available flow.
- c) All construction discharge water will be collected and treated using the best available technology applicable to site conditions.
- d) Treatments to remove debris, nutrients, sediment, petroleum hydrocarbons, metals and other pollutants likely to be present will be provided.
- 3) **Minimize time and extent of disturbance.** Earthwork (including drilling, excavation, dredging, filling and compacting) in which mechanized equipment is in stream channels, riparian areas, and wetlands will be completed as quickly as possible. Mechanized equipment will be used in streams only when project specialists believe that such actions are the only reasonable alternative for implementation, or would result in less sediment in the stream channel or damage (short- or long-term) to the overall aquatic and riparian ecosystem relative to other alternatives. To the extent feasible, mechanized equipment will work from the top of the bank, unless work from another location would result in less habitat disturbance.
- 4) **Cessation of work.** Project operations will cease under the following conditions:
 - a) High flow conditions that may result in inundation of the project area, except for efforts to avoid or minimize resource damage;
 - b) When allowable water quality impacts, as defined by the state CWA section 401 water quality certification or HIPIII Turbidity Monitoring Protocol, have been exceeded; or
 - c) When "incidental take" limitations have been reached or exceeded.
- 5) **Site restoration.** When construction is complete:
 - a) All streambanks, soils, and vegetation will be cleaned up and restored as necessary using stockpiled large wood, topsoil, and native channel material.
 - b) All project related waste will be removed.
 - c) All temporary access roads, crossings, and staging areas will be obliterated. When necessary for revegetation and infiltration of water, compacted areas of soil will be loosened.
 - d) All disturbed areas will be rehabilitated in a manner that results in similar or improved conditions relative to pre-project conditions. This will be achieved through redistribution of stockpiled materials, seeding, and/or planting with local native seed mixes or plants.

- 6) **Revegetation.** Long-term soil stabilization of disturbed sites will be accomplished with reestablishment of native vegetation using the following criteria:
 - a) Planting and seeding will occur prior to or at the beginning of the first growing season after construction.
 - b) An appropriate mix of species that will achieve establishment, shade, and erosion control objectives, preferably forb, grass, shrub, or tree species native to the project area or region and appropriate to the site will be used.
 - c) Vegetation, such as willow, sedge and rush mats, will be salvaged from disturbed or abandoned floodplains, stream channels, or wetlands.
 - d) Invasive species will not be used.
 - e) Short-term stabilization measures may include the use of non-native sterile seed mix (when native seeds are not available), weed-free certified straw, jute matting, and other similar techniques.
 - f) Surface fertilizer will not be applied within 50 feet of any stream channel, waterbody, or wetland.
 - g) Fencing will be installed as necessary to prevent access to revegetated sites by livestock or unauthorized persons.
 - h) Re-establishment of vegetation in disturbed areas will achieve at least 70% of pre-project conditions within 3 years.
 - i) Invasive plants will be removed or controlled until native plant species are well-established (typically 3 years post-construction).
- 7) **Site access.** The project sponsor will retain the right of reasonable access to the site in order to monitor the success of the project over its life.
- 8) **Implementation monitoring.** Project sponsor staff or their designated representative will provide implementation monitoring by filling out the Project Completion Form (PCF) to ensure compliance with the applicable biological opinion, including:
 - a) General conservation measures are adequately followed; and
 - b) Effects to listed species are not greater than predicted and incidental take limitations are not exceeded.
 - Turbidity monitoring shall be conducted in accordance with the HIPIII turbidity monitoring protocol outlined on the following page and recorded in the Project Completion Form (PCF).
- 9) CWA section 401 water quality certification. The project sponsor or designated representative will complete and record water quality observations to ensure that in-water work is not degrading water quality. During construction, CWA section 401 water quality certification provisions provided by the Oregon Department of Environmental Quality, Washington Department of Ecology, or Idaho Department of Environmental Quality will be followed.

Staged Rewatering Plan.

When appropriate, the project sponsor shall implement a staged rewatering plan for projects that involve introducing streamflow into recently excavated channels under the 2f) Channel Reconstruction or 2a) Improve Secondary Channel and Wetland Habitat Activity category.

- 1) Pre-wash the newly excavated channel before rewatering. Turbid wash water will be detained and pumped to the floodplain, rather than discharging to fish-bearing waters.
- 2) Prepare new channel for water by installing seine at upstream end to prevent fish from moving downstream into new channel until 2/3 of total stream flow is available in that channel. Starting in the early morning, introduce 1/3 of the flow into the new channel over a period of 1-2 hours.
- 3) Perform monitoring according to HIP III Turbidity Monitoring Protocol (Page 19).
 - 1) If turbidity exceeds 10% of background, modify the activity to reduce turbidity. In this case, this might mean decreasing the amount of flow entering the new channel and/or correcting any other issues that are causing turbidity (for example correct a bank that is sloughing, install or correct a BMP, etc.).
 - 2) Monitor every 2 hours as long as the in stream activity is occurring.
 - 3) If exceedances occur for more than 2 monitoring intervals in a row (4 hours), then the activity must stop until turbidity reaches background levels. This means that the contractor may have to plug off water supply to the new meander until turbidity is within acceptable levels.
 - 4) Once turbidity is within 10% of background levels, move on to the next watering stage
- 4) Prepare to introduce the second 1/3 of the flow (up to a total of 66%) to the new channel by installing seine at upstream end of old channel in order to prevent fish from moving into a partially dewatered channel. Introduce the second 1/3 of the flow over the next 1-2 hours. Salvage fish from the old channel at this time, so that the old channel is fish-free before dropping below 1/3 of the flow. (Note that fish will be temporarily blocked from moving downstream into either channel until 2/3 of the flow has been transitioned to the new channel. This blockage to downstream fish passage is expected to persist for roughly 12 to 14 hours, but fish will still be able to volitionally move out of the channel in the downstream direction.)
- 5) Perform monitoring as in #2 above.
- 6) After the second 1/3 of flow is introduced over 2 hours, and once turbidity meets is within 10% of background levels,, then remove seine nets from the new channel and allow fish to move downstream into that channel.
- 7) Introduce the final 1/3 of flow. Once 100% of the flow is in the new channel, plug/pull nets from old channel.

HIP III Turbidity Monitoring Protocol.

The Project Sponsor shall complete and record the following water quality observations to ensure that any increase in suspended sediment is not exceeding the limit for HIPIII compliance. Records shall be reported on the HIPIII Project Completion Form (PCF).

If the geomorphology of the project area (silty or claylike materials) or the nature of the action (large amounts of bare earth exposed below the bankfull) shall preclude the successful compliance with these triggers, notify your EC_Lead who shall pre-notify the Services of a likely exceedance.

- 1. Take a background turbidity sample using an appropriately and frequently calibrated turbidimeter in accordance with manufacturer's instructions, or a visual turbidity observation, every 2 hours while work is being implemented, or more often if turbidity disturbances vary greatly, to ensure that the in-water work area is not contributing visible sediment to the water column. The background samples or observations should be taken at a relatively undisturbed area approximately 100 feet upstream from the project area. Record the observation, location, and time before monitoring at the downstream point.
- 2. Take a second sample or observation, immediately after each upstream sample or observation, approximately 50 feet downstream from the project area in streams that are 30 feet wide or less; 100 feet downstream from the project area for streams between 30 and 100 feet wide; 200 feet downstream from the project area for streams greater than 100 feet wide; and 300 feet from the discharge point or nonpoint source for areas subject to tidal or coastal scour. Record the downstream observation, location, and time.
- 3. Compare the upstream and downstream observations/samples. If observed or measured turbidity downstream is more than upstream observation or measurement (> 10%), the activity must be modified to reduce turbidity. If visual estimates are used, an obvious difference between upstream and downstream observations shall bear the assumption of a (> 10%) difference. Continue to monitor every 2 hours as long as instream activity continues.
- 4. If exceedances occur for more than two monitoring intervals in a row (after 4 hours), the activity must stop until the turbidity level returns to background, and the EC lead must be notified within 48 hours. The EC lead shall document the reasons for the exceedance, corrective measures taken, notify the local NMFS branch chief and/or USFWS field supervisor and seek recommendations.
- 5. If at any time, monitoring, inspections, or observations/samples show that the turbidity controls are ineffective, immediately mobilize work crews to repair, replace, or reinforce controls as necessary.

Stormwater Management Guidance

The project proponent must provide stormwater management for any project that will: increase the contributing impervious area within the project area; construct new pavement that increases capacity or widens the road prism; construct pavement down to subgrade; rehabilitate or restore a bridge to repair structural or functional deficiencies that are too complicated to be corrected through normal maintenance, except for seismic retrofits that make a bridge more resistant to earthquake damage (e.g., external post-tensioning, supplementary dampening) but do not affect the bridge deck or drainage; replace a stream crossing; change stormwater conveyance. Stormwater management is not required for the following pavement actions: minor repairs, patching, chip seal, grind/inlay, overlay or resurfacing (i.e., non-structural pavement preservation, a single lift or inlay).

Stormwater management consists of:

- 1) Water quality (pollution reduction) treatment for post-construction stormwater runoff from all contributing impervious area.
- 2) Water quantity treatment
 - a) Water quantity (flow) management for runoff from all contributing impervious area that will discharge into an intermittent or perennial water body in a watershed that is smaller than 100 mi2, unless the outfall discharges directly into a lake, reservoir, or estuary.

OR

b) Water quantity (flow) management for runoff from all contributing impervious area that will discharge more than 0.5 cfs during the 2-year, 24-hour storm into an intermittent or perennial water body in a watershed smaller than 100 mi₂, unless the outfall discharges directly into a lake, reservoir, or estuary.

Stormwater management plans must:

- 1) Explain how highway runoff from all contributing impervious area that is within or contiguous with the project area will be managed using site sketches, drawings, specifications, calculations, or other information commensurate with the scope of the action.
- 2) Identify the pollutants of concern.
- 3) Identify all contributing and non-contributing impervious areas that are within and contiguous with the project area.
- 4) Describe the BMPs that will be used to treat the identified pollutants of concern, and the proposed maintenance activities and schedule for the treatment facilities.
- 5) Provide a justification for the capacity of the facilities provided based on the expected runoff volume, including, e.g., the design storm, BMP geometry, analyses of residence time, as appropriate.
- 6) Include the name, email address, telephone number of a person responsible for designing the stormwater management facilities so that NMFS may contact that person if additional information is necessary.

All stormwater quality treatment practices and facilities must be designed to accept 50% of the cumulative rainfall from the 2-year, 24-hour storm for that site, except as follows: climate zone 4 - 67%; climate zone 5 - 75%; and climate zone 9 - 67%. A continuous rainfall/runoff model may be used instead of the above runoff depths to calculate water quality treatment depth.

Use low impact development practices to infiltrate or evaporate runoff to the maximum extent feasible. For runoff that cannot be infiltrated or evaporated and therefore will discharge into surface or subsurface waters, apply one or more of the following specific primary treatment practices, supplemented with appropriate soil amendments:

- 1) Bioretention cell
- 2) Bioslope, also known as an "ecology embankment"
- 3) Bioswale
- 4) Constructed wetlands
- 5) Infiltration pond
- 6) Media filter devices with demonstrated effectiveness
- 7) Porous pavement, with no soil amendments and appropriate maintenance

All stormwater flow control treatment practices and facilities must be designed to maintain the frequency and duration of flows generated by storms within the following end-points:

- 1) Lower discharge endpoint, by USGS flood frequency zone:
 - a. Western Region = 42% of 2-year event
- 2) Eastern Region
 - a. Southeast, Northeast, North Central = 48% of 2-year event
 - b. Eastern Cascade = 56% of 2-year event
- 3) Upper discharge endpoint
 - a. Entrenchment ratio <2.2 = 10-year event, 24-hour storm
 - b. Entrenchment ratio >2.2 = bank overtopping event

When conveyance is necessary to discharge treated stormwater directly into surface water or a wetland, the following requirements apply:

- 1) Maintain natural drainage patterns.
- To the maximum extent feasible, ensure that water quality treatment for highway runoff from all contributing impervious area is completed before commingling with offsite runoff for conveyance.

General Conservation Measures for Terrestrial Plants, Wildlife and Aquatic Invertebrates

This section describes general conservation measures (CMs) and practices included in the proposed action to minimize or avoid the exposure of certain endangered, threatened, and proposed species managed by USFWS to any effects of the underlying restoration activities. These standards include practices that would minimize or avoid any such effects on designated critical habitat for those species. Restoration projects are unlikely to occur within the range of some of the listed species included herein, but due to the programmatic approach to this consultation, and the fact that specific project locations are unknown at this time, we are providing the benefit of the doubt to the species and have included project design measures for all species that occur within the proposed action area.

An FWS biologist will review the Project Notification/Completion form for each project to confirm the project design meets the conditions for *no effect* or *not likely to adversely affect* to listed species or critical habitat. Projects than cannot meet these conditions will need to be modified or will require a separate section 7 consultation.

Identifying Species Locations. When proposed project locations have been identified, the action agency or project proponent will obtain the current species list for the county in which the proposed project is located. The species lists can be accessed at the following websites:

• **Idaho**: http://www.fws.gov/idaho/species/IdahoSpeciesList.pdf

If species are located within the county where the proposed project is located, refer to the habitat descriptions for each species below for each species or critical habitat to determine whether that listed species may occur in the vicinity of the proposed project. Maps for some species have also been provided at the end of this Appendix to assist in identifying suitable habitat that may be occupied by listed species. For additional assistance, contact the appropriate state FWS office for more information:

• Idaho Fish and Wildlife Office: (208) 378-5243

If it is determined that listed species, critical habitat, or unsurveyed suitable habitat for listed species are located within the vicinity (generally within 1 mile) of the proposed project, the action agency will implement the following project design standards for each species. Additional species-specific conservation measures may apply (Your EC lead shall provide you with those).

Conservation Measures:

- 1) **Project Access.** Existing roads or travel paths will be used to access project sites whenever possible; vehicular access ways to project sites will be planned ahead of time and will provide for minimizing impacts on riparian corridors and areas where listed species or their critical habitats may occur.
- 2) Vehicle use and human activities. Including walking in areas occupied by listed species, will be minimized to reduce damage or mortality to listed species.
- 3) **Flight patterns.** Helicopter flight patterns will be established in advance and located to avoid seasonally important wildlife habitat

4) **Herbicide Use.** On sites where ESA-listed **terrestrial wildlife** may occur, herbicide applications will be avoided or minimized to the extent practicable while still achieving project goals. Staff will avoid any potential for direct spraying of wildlife or immediate habitat in use by wildlife for breeding, feeding, or sheltering. Herbicide use in or within 1 mile of habitat where listed terrestrial wildlife occur will be limited to the chemicals and application rates as shown in **Table 1**. Additional species-specific herbicide limitations are also defined below in each species CMs section.

TABLE 1: Maximum Herbicide Application Rates in or Within 1 Mile of Habitat Where ESA-listed Terrestrial Species Occur⁵

	2,4-D	Aminopyralid	Chlorsulfuron	Clethodim	Clopyralid	Dicamba	Glyphosate 1	Glyphosate 2	Imazapic	Imazapyr	Metsulfuron	Picloram	Sethoxydim	Sulfometuron	Triclopyr (TEA)
Listed Species	Maximum Rate of Herbicide Appliction (lb/ac)														
Mammals	NA	0.22	0.083	NA	0.375	NA	2.0	2.0	0.189	1.0	0.125	NA	0.3	NA	NA
Birds*	NA	0.11	0.083	NA	0.375	NA	2.0	2.0	0.189	1.0	0.125	NA	0.3	NA	NA
Invertebrates*	NA	NA	NA	NA	0.375	NA	2.0	2.0	NA	1.0	NA	NA	0.3	NA	NA

NA = Not Authorized for use

^{*} See required buffers and methods restrictions within each species-specific PDS

⁵ This list of chemicals is based on the analyses in the Syracuse Environmental Research Associates (SERA) risk assessments maintained by the U.S. Forest Service and available at http://www.fs.fed.us/foresthealth/pesticide/risk.shtml. The herbicides and application rates listed in this table include only those that were found in the SERA assessments to be below both the acute and chronic NOAELs for terrestrial wildlife.

River, Stream, and Floodplain Restoration

2c: Protect Streambanks Using Bioengineering Methods

Description. BPA proposes to review and fund projects that restore eroding streambanks by bank shaping and installation of coir logs or other soil reinforcements – bioengineering techniques as necessary to support development of riparian vegetation and/or planting or installing large wood, trees, shrubs, and herbaceous cover as necessary to restore ecological function in riparian and floodplain habitats.

As techniques that are covered by this programmatic need to have the primary purpose of restoring floodplain and estuary functions or to enhance fish habitat, streambank stabilization shall only be proposed when there are additional interrelated and interdependent habitat restoration actions.

Streambank erosion often occurs within meandering alluvial rivers on the outside of meander bends. The rate of erosion and meander migration is often accelerated due to degradation of the stream side riparian vegetation and land use practices that have removed riparian woody species. Historically, as the river migrates into the adjacent riparian areas, LW would be recruited from the banks resulting in reduced near bank velocities and increased boundary roughness. Where a functional riparian area is lacking, the lateral bank erosion may occur at an unnaturally accelerated rate. The goal of streambank restoration is to reestablish long term riparian processes through re-vegetation and riparian buffer strips. Structural bank protection may be used to provide short term stability to banklines allowing for vegetation establishment.

The primary proposed structural streambank stabilization action is the use of large wood and vegetation to increase bank strength and resistance to erosion in an ecological approach to engineering streambank stabilization.

The following bioengineering techniques⁶ are proposed for use either individually or in combination: (a) Woody plantings and variations (e.g., live stakes, brush layering, facines, brush mattresses); (b) herbaceous cover, for use on small streams or adjacent wetlands; (c) deformable soil reinforcement, consisting of soil layers or lifts strengthened with biodegradable coir fabric and plantings that are penetrable by plant roots; (d) coir logs (long bundles of coconut fiber), straw bales and straw logs used individually or in stacks to trap sediment and provide a growth medium for riparian plants; (e) bank reshaping and slope grading, when used to reduce a bank slope angle without changing the location of its toe, to increase roughness and cross section, and to provide more favorable planting surfaces; (f) tree and LW rows, live siltation fences, brush traverses, brush rows and live brush sills in floodplains, used to reduce the likelihood of avulsion in areas where natural floodplain roughness is poorly developed or has been removed and (g) floodplain flow spreaders, consisting of one or more rows of trees and accumulated debris used to spread flow across the floodplain; and (h) use of LW as a primary structural component.

Lemhi River Restoration 18

_

⁶ For detailed descriptions of each technique refer to the WDFW Integrated Streambank Protection Guidelines: http://wdfw.wa.gov/publications/00046/, the USACE's EMRRP Technical Notes, Stream Restoration: http://el.erdc.usace.army.mil/publications.cfm?Topic=technote&Code=emrrp, or the NRCS National Engineering Handbook Part 654, Stream Restoration: http://policy.nrcs.usda.gov/viewerFS.aspx?id=3491

Conservation measures:

- 1) Without changing the location of the bank toe, damaged streambanks will be restored to a natural slope, pattern, and profile suitable for establishment of permanent woody vegetation. This may include sloping of unconsolidated bank material to a stable angle of repose, or the use of benches in consolidated, cohesive soils. The purpose of bank shaping is to provide a more stable platform for the establishment of riparian vegetation, while also reducing the depth to the water table, thus promoting better plant survival.
- 2) Streambank restoration projects shall include the placement of a riparian buffer strip consisting of a diverse assemblage of species native to the action area or region, including trees, shrubs, and herbaceous species. Do not use invasive species.
- 3) Large wood will be used as an integral component of all streambank protection treatments unless restoration can be achieved with soil bioengineering techniques alone.
- 4) LW will be placed to maximize near bank hydraulic complexity and interstitial habitats through use of various LW sizes and configurations of the placements.
- 5) Structural placement of LW should focus on providing bankline roughness for energy dissipation vs. flow re-direction that may affect the stability of the opposite bankline.
- 6) LW will be intact, hard, and undecayed to partly decaying with untrimmed root wads to provide functional refugia habitat for fish. Use of decayed or fragmented wood found lying on the ground may be used for additional roughness and to add complexity to LW placements but will not constitute the primary structural components.
- 7) Wood that is already within the stream or suspended over the stream may be repositioned to allow for greater interaction with the stream.
- 8) LW anchoring will not utilize cable or chain. Manila, sisal or other biodegradable ropes may be used for lashing connections. If hydraulic conditions warrant use of structural connections then rebar pinning or bolting may be used. The utilization of structural connections should be used minimally and only to ensure structural longevity in high energetic systems such as (high gradient systems with lateral confinement and limited floodplain). Need for structural anchorage shall be demonstrated in the design documentation.
- 9) Rock will not be used for streambank restoration, except as ballast to stabilize large wood unless it is necessary to prevent scouring or downcutting of an existing flow control structure (e.g., a culvert or bridge support, headwall, utility lines, or building). In this case rock may be used as the primary structural component for construction of vegetated riprap with large woody debris. Scour holes may be filled with rock to prevent damage to structure foundations but will not extend above the adjacent bed of the river. This does not include scour protection for bridge approach fills.
- 10) The rock may not impair natural stream flows into or out of secondary channels or riparian wetlands.
- 11) Fencing will be installed as necessary to prevent access and grazing damage to revegetated sites and project buffer strips.
- 12) Riparian buffer strips associated with streambank protection shall extend from the project bankline towards the floodplain a minimum distance of 35 feet.

2e: Riparian Vegetation Planting

Description. BPA proposes to fund vegetation planting to recover watershed processes and functions associated with native plant communities and that will help restore natural plant species composition and structure. Under this activity category, project proponents would plant trees, shrubs, herbaceous plants, and aquatic macrophytes to help stabilize soils. Large trees such as cottonwoods and conifers will be planted in areas where they historically occurred but are currently either scarce or absent. Native plant species and seeds will be obtained from local sources to ensure plants are adapted to local climate and soil chemistry.

Vegetation management strategies will be utilized that are consistent with local native succession and disturbance regimes and specify seed/plant source, seed/plant mixes, and soil preparation. Planting will address the abiotic factors contributing to the sites' succession, *i.e.*, weather and disturbance patterns, nutrient cycling, and hydrologic condition. Only certified noxious weed-free seed (99.9%), hay, straw, mulch, or other vegetation material for site stability and revegetation projects will be utilized.

Conservation measures:

- 1) An experienced silviculturist, botanist, ecologist, or associated technician shall be involved in designing vegetation treatments.
- 2) Species to be planted must be of the same species that naturally occurs in the project area.
- 3) Tree and shrub species as well as sedge and rush mats to be used as transplant material shall come from outside the bankfull width, typically in abandoned flood plains, and where such plants are abundant.
- 4) Sedge and rush mats should be sized as to prevent their movement during high flow events.
- 5) Concentrate plantings above the bankfull elevation.
- 6) Species distribution shall mimic natural distribution in the riparian and floodplain areas.

Sponsor Signature

As a condition of funding, I acknowledge my responsibility to ensure that the project as described will meet all of the applicable general and specific conservation measures, in addition to all the applicable terms and conditions of the HIP III Biological Opinion, unless NMFS and/or USFWS has approved a variance request.

Project Sponsor's Signature	Date